LETTERS 2003 Vol. 5, No. 25 4759–4762

ORGANIC

Chiral $\alpha_{,\beta}$ -Dialkoxy- and α -Alkoxy- β -aminostannanes: Preparation and Copper-Mediated Cross-Coupling

Suchismita Mohapatra,[†] A. Bandyopadhyay,[†] D. K. Barma,[†] Jorge H. Capdevila,[‡] and J. R. Falck^{*,†}

Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, and Departments of Medicine and Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232

j.falck@utsouthwestern.edu

Received August 1, 2003

ABSTRACT

Addition of $Zn(n-Bu_3Sn)_2$ to prochiral aldehydes affords *anti-\alpha,\beta-dialkoxy- and <i>anti-\alpha-alkoxy-\beta-aminostannanes in good yield (up to 77%) and* excellent diastereoselectivity (up to 98% de). *syn*-Isomers are accessed from the initial adducts via Mitsunobu inversion/saponification. The corresponding thionocarbamates undergo mild Cu(I)-mediated cross-coupling with a variety of organic halides, inter alia, allylic, cinnamylic, propargylic, and acetylenic, with retention of configuration.

 α -Alkoxyalkylstannanes have received broad acceptance as convenient precursors to configurationally stable α -alkoxy-¹ and α -aminoalkyl anions,² as well as cuprates.³ Comparable transmetalations with α , β -dialkoxyalkylstannanes (**1**, X = O) and α -alkoxy- β -aminoalkylstannanes (**1**, X = N'BOC), however, are thwarted by facile β -elimination (eq 1).⁴

Herein, we report the facile exchange of thionocarbamatesubstituted 1 with Cu(I) salts and subsequent high-yield cross-coupling to various organic halides with retention of configuration.⁵ Additionally, we describe a practical, diastereoselective preparation of chiral *syn-* and *anti-***1** from readily available precursors.⁶

Addition of the lithium or magnesium salt of *n*-tributylstannane under a variety of conditions to prochiral aldehyde (R)-2,3-O-isopropylidene-D-glyceraldehyde (2) generated a

[†] UT Southwestern.

[‡] Vanderbilt University School of Medicine.

^{(1) (}a) Smyj, R. P.; Chong, J. M. Org. Lett. **2001**, *3*, 2903–2906. (b) Still, W. C.; Sreekumar, C. J. Am. Chem. Soc. **1980**, *102*, 1201–1202. (c) Sawyer, J. S.; MacDonald, T. L.; McGarvey, G. J. J. Am. Chem. Soc. **1984**, *106*, 3376–3377.

^{(2) (}a) Ncube, A.; Park, S. B.; Chong, J. M. J. Org. Chem. **2002**, 67, 3625–3636. (b) Tomoyasu, T.; Tomooka, K.; Nakai, T. Tetrahedron Lett. **2000**, *41*, 345–349.

^{(3) (}a) Linderman, R. J.; Godfrey, A.; Horne, K. *Tetrahedron Lett.* **1987**, 28, 3911–3914.

⁽⁴⁾ Configurationally fixed anions and copper reagents have been prepared from α , γ -dialkoxyalkylstannanes: Linderman, R. J.; Griedel, B. D. J. Org. Chem. **1991**, *56*, 5491–5493.

⁽⁵⁾ Thionocarbamates are useful alcohol protective groups: Barma, D. K.; Bandyopadhyay, A.; Capdevila, J. H.; Falck, J. R. *Org. Lett.* **2003**, *5*, 4755–4758.

⁽⁶⁾ Synthesis of chiral α-hydroxyalkylstannanes by asymmetric reduction of acylstannanes: (a) Chan, P. C. M.; Chong, J. M. J. Org. Chem. 1988, 53, 5584–5586. (b) Marshall, J. A.; Gung, W. Y. Tetrahedron Lett. 1988, 29, 1657–1660.

mixture of *syn*- and *anti*-adducts.⁷ In sharp contrast, zinc bis-(*n*-tributylstannane) afforded the *anti*-adduct $3^{8,9}$ in good yield and with very high diastereoselectivity (Table 1).¹⁰ The latter result is consistent with addition to the carbonyl following the nonchelation, Felkin model.¹¹ Cyclohexylidene 4,¹² oxazolidine 6,¹³ and pyrrolidine 8^{14} behaved analogously

(8) Representative spectral/physical data for 3: ¹H NMR (CDCl₃, 300 MHz) δ 0.87-0.96 (m, 15H), 1.28-1.35 (m, 6H), 1.39 (s, 3H), 1.43 (s, 3H), 1.48-1.54 (m, 6H), 1.99-2.01 (m, 1H), 3.83-3.88 (m, 1H), 3.92-3.97 (m, 1H), 4.19-4.21 (m, 1H), 4.30-4.36 (m, 1H); MS m/z 422 (M⁺); $[\alpha]^{25}_{D}$ 11.9° (c 1.65, CHCl₃). Representative spectral/physical data for 5: ¹H NMR (CDCl₃, 400 MHz) δ 0.87–0.94 (m, 15H), 1.29–1.63 (m, 22H), 2.01-2.12 (m, 1H), 3.84 (t, 1H, J = 7.4 Hz), 3.94 (t, 1H, J = 7.35 Hz), 4.17-4.25 (m, 1H), 4.30-4.36 (m, 1H); MS m/z 462 (M⁺). Representative spectral/physical data for 17: ¹H NMR (CDCl₃, 400 MHz) δ 0.89–0.97 (m, 15H), 1.30-1.36 (m, 6H), 1.37 (s, 3H), 1.44 (s, 3H), 1.48-1.55 (m, 6H), 1.82 (d, 1H, J = 6.7 Hz), 3.75 (t, 1H, J = 7.30 Hz), 3.91-3.96 (m, 2H), 4.39 (q, 1H, J = 6.4 Hz). Representative spectral/physical data for **20**: ¹H NMR (CDCl₃, 400 MHz) δ 0.87 (t, 9H, J = 7.3 Hz), 0.95 (t, 6H, J = 7.5 Hz), 1.24–1.34 (m, 9H), 1.39 (s, 3H), 1.42–1.54 (m, 6H), 3.10 (s, 3H), 3.35 (s, 3H), 3.62-3.66 (m, 1H), 4.07-4.11 (m, 1H), 4.44-4.54 (m, 1H), 4.64–5.72 (m, 1H); $[\alpha]^{25}_{D}$ 25.75° (c 2.36, CHCl₃). Representative spectral/physical data for 24: ¹H NMR (CDCl₃, 400 MHz) δ 1.33 (s, 3H), 1.41 (s, 3H), 2.47-2.51 (m, 2H), 3.09 (s, 3H), 3.35 (s, 3H), 3.88 (dd, 1H, J = 6.0, 8.4 Hz, 4.03 (dd, 1H, J = 6.8, 8.4 Hz), 4.26–4.31 (m, 1H), 5.05– 5.13 (m, 2H), 5.63-5.68 (m, 1H), 5.75-5.86 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 25.33, 26.61, 35.16, 37.93, 43.09, 66.40, 76.31, 80.11, 109.82, 118.29, 133.40, 187.74; MS m/z 259 (M⁺); $[\alpha]^{25}_{D} = -17.56^{\circ}$ (c 1.97, CHCl₃). Representative spectral/physical data for 34: ¹H NMR (CDCl₃, 300 MHz) δ 1.34 (s, 3H), 1.38 (s, 3H), 1.90–1.97 (m, 4H), 2.35–2.42 (m, 2H), 2.71 (t, 2H, J = 7.8 Hz), 3.46–3.63 (m, 2H), 3.69–3.82 (m, 3H), 3.99 (dd, 1H, J = 6.0, 8.4 Hz), 4.23-4.31 (m, 1H), 5.44-5.53 (m, 1H),5.79–5.89 (m, 1H), 6.01–6.05 (m, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 24.74, 25.44, 25.82, 26.54, 34.42, 35.49, 48.06, 52.37, 66.08, 77.68, 80.03, 109.98, 125.17, 126.07, 128.51, 128.75, 135.52, 141.75, 184.44; $[\alpha]^{25}{}_{D} =$ -11.93° (c 0.62, CHCl₃). Representative spectral/physical data for 36: ¹H NMR (CDCl₃, 400 MHz) δ 1.36 (s, 3H), 1.41 (s, 3H), 1.79–1.87 (m, 2H), 2.34-2.40 (m, 2H), 2.64 (t, 2H, J = 8.0 Hz), 2.97 (s, 6H), 3.72 (dd, 1H, J = 6.8, 8.0 Hz), 4.12 (dd, 1H, J = 6.4, 8.0 Hz), 4.62–4.68 (m, 1H), 5.33– 5.40 (m, 1H), 7.14-7.20 (m, 3H), 7.23-7.28 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 26.07, 26.89, 29.79, 34.79, 35.43, 37.03, 69.62, 74.20, 91.90, 98.10, 109.83, 125.95, 128.50, 128.73, 142.38, 166.36, 207.79; MS m/z 361 (M⁺); $[\alpha]^{23}_{D}$ –5.30° (c 2.05, CHCl₃). Representative spectral/physical data for **38**: IR (neat) 1733, 1663, 1366, 1250, 1216, 1163, 1056 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.24–1.32 (m, 4H), 1.35 (s, 3H), 1.40 (s, 3H), 1.42-1.53 (m, 2H), 1.54-1.62 (m, 2H), 1.81-1.97 (m, 4H), 2.24-2.34 (m, 4H), 3.32 (t, 2H, J = 6.8 Hz), 3.48 (t, 2H, J = 6.8 Hz), 3.62 (s, 3H), 3.70 (dd, 1H, J = 6.8, 8.4 Hz), 4.10 (dd, 1H, J = 6.0, 8.4 Hz), 4.59-4.65 (m, 1H), 5.28–7.32 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 24.74, 25.10, 25.88, 26.04, 26.88, 27.74, 28.76, 29.10, 34.26, 35.11, 46.24, 47.40, 51.63 69.63, 74.29, 91.68. 98.23, 109, 76, 163.76, 163.87, 174.45, 207.58; MS m/z 441 (M⁺); $[\alpha]^{23}_{\rm D}$ -11.60° (c 1.5, CHCl₃).

(9) The configuration of **3** was confirmed by conversion to **22**, removal of the thiocarbamate using LiAlH4, and comparisons of the resultant alcohol with authentic samples of *erythro*- and *threo*-1,2-*O*-iospropylidenehex-5-ene-1,2,3-triol. The configuration of diastereomer **17** was likewise confirmed. Roush, W. R.; Walts, A. E.; Hoong, L. K. J. Am. Chem. Soc. **1985**, *107*, 8186–8190.

(10) General Procedure for Preparation of $\alpha_*\beta$ -Dialkoxy- and α -Alkoxy- β -amidostannanes. *n*-Buli (2.2 mmol, 2.5 M in hexane) was added dropwise to a 0 °C solution of (*i*-Pr)₂NH (2.2 mmol) in anhydrous THF (3 mL) under an argon atmosphere. After stirring for 0.5 h, Bu₃SnH (2.2 mmol) was added neat over 10 min followed after another 0.5 h by dry ZnBr₂ (1.1 mmol) in THF (2 mL). The reaction mixture was maintained at 0 °C for 0.5 h, then cooled to -78 °C, and the prochiral aldehyde (1.0 mmol) in THF (2 mL) was added. After 4 h, the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O (3 × 8 mL). The combined ethereal extracts were washed with water and brine, dried over Na₂SO₄, and evaporated under reduced pressure. The residue was purified by flash SiO₂ chromatography to the α -hydroxyalkylstannane adduct in 68–77% yield (Table 1). Adducts are somewhat labile and are best used immediately in the next reaction.

(11) Mead, K.; Macdonald, T. L. J. Org. Chem. 1985, 50, 422-424.

(12) Chattopadhyay, A.; Mamdapur, V. R. J. Org. Chem. 1995, 60, 585– 587.

(13) Coleman, R. S.; Carpenter, A. J. Tetrahedron Lett. 1992, 33, 1697–1700.

Table 1.	Preparation	of α,β -Dialkoxy-	and
Alkovy	B aminostan	nanac	

α -Alkoxy- β -aminostannanes	
---	--

entry	aldehyde	adduct	yield (%)	de (%) ^a
1		O SnBu ₃ SnBu ₃	72	98
2	о сно	O O SnBu ₃	77	98
3		→_N- ^t BOC O T O O H	74	98
4		N ^t BOC OH	70	95
5	OMOM Ph CHO 10	OMOM Ph 11 ^{ÖH}	68	98
6	OMEM Ph CHO 12	OMEM PhSnBu ₃ 13 ^{————————————————————————————————————}	75	98
7	OBz CHO 14	OBz SnBu ₃ ÖH	66	92
	14	15		

^a Determined by NMR analysis of Mosher ester.

to 2, leading predominately to *anti*-adducts 5, 7, and 9, respectively. It was gratifying that the results with acyclic α -hydroxyaldehydes were also satisfactory, provided good coordinating substituents were present, e.g., MOM ether 10^{15} to 11 and MEM ether 12 to 13. Some loss of stereospecificity occurs when esters are used, as evident in the conversion of 14^{16} to 15. Because the adducts were somewhat labile, they were typically utilized in the next step with a minimum of delay.

Access to the corresponding *syn*-adducts was achieved by the Mitsunobu inversion/deprotection sequence embodied in the transformation of 3 into 17 via benzoate 16 (eq 2).

⁽¹⁴⁾ Tokuyama, H.; Yokoshima, S.; Lin, S.-C.; Li, L.; Fukuyama, T. Synthesis 2002, 1121–1123.

⁽⁷⁾ Review of organometallic additions to aldehyde **2**: Jurczak, J.; Pikul, S.; Bauer, T. *Tetrahedron* **1986**, *42*, 447–488.

⁽¹⁵⁾ Ogura, K.; Tsuruda, T.; Takahashi, K.; Iida, H. Tetrahedron Lett. **1986**, *27*, 3665–3668.

⁽¹⁶⁾ Kosugi, H.; Kitaoka, M.; Takahashi, A.; Uda, H. J. Chem. Soc., Chem. Commun. 1986, 1268–1270.

As previously reported,¹⁷ transition metal catalyzed crosscouplings of α -hydroxy- and α -aminoalkylstannanes are greatly facilitated by derivatization of the α -heteroatom with coordinating functionality. Thionocarbamates are especially efficacious and can stabilize the intermediate organometallic at room temperature or above.17b Conventional thionocarbamoylation⁵ of the adducts in Table 1 using N,N-dimethylthiocarbamoyl chloride/NaH caused some equilibration, presumably via reversion to the starting aldehyde and sodium *n*-tributylstannane, then rapid recombination. Alternatively, good to excellent yields of thiocarbamate were obtained by sequential reaction with 1,1'-thiocarbonyldiimidazole and addition of a secondary amine to the intermediate thionoimidazolide.⁵ This process is illustrated in the conversion of 3a,b to 18a,b and whence to pyrrolidine 19a,b and dimethylamine 20 in good overall yields (Scheme 1).

The scope of the cross-coupling was explored using 19a,b or 20 and a panel of representative organic halides (Table 2).¹⁸ All three model stannanes cross-coupled smoothly with allyl bromide (21) using any of several Cu(I) salts in THF at 50 °C and gave essentially identical yields of 22, 23, and 24, respectively. However, the reaction rate was generally fastest with CuI.¹⁹ Cinnamyl bromide 25 led to 26 as the sole product, whereas addition to (Z)-allyl bromide 27 afforded **28** accompanied by a minor amount (5%) of $S_N 2'$ adduct. Notably, no (E)-28 was observed. Similar behavior was exhibited by acetylenes 29 and 31; the former phenyl conjugated system yielded 30 only and the latter nonconjugated propargyl gave 32 and a small amount (6%) of allene. Yields of adducts at sp²-centers, such as vinyl iodide 33 to 34, were typically modest under our standard conditions. On the other hand, reactions at sp-centers proceeded well, e.g., 36 from 35 in 96% yield and 38 from 37 in 94% yield.

Table 2.	Cross-Coupling of α,β -Dialkoxy- and
α-Alkoxy-	β -aminostannanes

entry	thioca	arb. electrophile	adduct yi	eld (%
1	19a	Br 21	→ 0 0 22 ŌR	89
2	19b	21		92
3	20	21	24 ÖR1	95
4	19a	PhBr 25	↓ o o ↓ ↓ Ph 26 ^{ÖR}	92
5	19a	MeO ₂ C 3 27		9 89
6	19a	PhBr 29	→0 0 30 [¯] ŌR	91
7	19a	Br 		79
8	19a	Phl 33	→ 0 0 → 1 2 → Ph 2 34 ÖR	45
9	20	PhBr 35	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ 0 \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	96
10	19a	MeO₂C	→ 0 0 0 38 0 5 0 5 0 5	le ₉₄
		$R = \bigvee_{S}^{N} N$, $R_1 =$	y S	

In summary, we report a practical diastereoselective synthesis of *syn-* and *anti-* α , β -dialkoxy- or α -alkoxy- β -aminostannanes from prochiral aldehydes, conversion of the adducts to thionocarbamates, and subsequent Cu(I)-mediated stereospecific cross-coupling with organic halides. We

^{(17) (}a) Falck, J. R.; Bhatt, R. K.; Ye, J. J. Am. Chem. Soc. **1995**, 117, 5973–5982. (b) Bhatt, R. K.; Ye, J.; Falck, J. R. Tetrahedron Lett. **1996**, 37, 3811–3814.

⁽¹⁸⁾ **Cross-Coupling General Procedure.** To a stirring, room-temperature solution of α,β -dialkoxystannane or α -alkoxy- β -aminostannane (1.0 mmol) and CuI (7–10 mol %) in anhydrous THF (5 mL) was added an organic halide (1.1 mmol) in THF (1 mL) under an argon atmosphere. The resulting solution was heated at 50 °C for 3–4 h. After cooling, Et₂O (10 mL) was added, and the mixture was filtered. Evaporation of the filtrate under reduced pressure and chromatographic purification of the residue gave the cross-coupled adduct in the indicated yield (Table 2).

⁽¹⁹⁾ Best results were obtained with 7–10 mol % of Cu(I) salt. Larger quantities encouraged β -elimination.

anticipate this methodology will find wide utility in the construction of stereogenic centers.

Acknowledgment. Financial support provided by the Robert A. Welch Foundation and NIH (GM31278, DK38226, GM37922).

Supporting Information Available: Physical and spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL035458V