ORGANIC

Chiral r**,***â***-Dialkoxy- and** r**-Alkoxy-***â***-aminostannanes: Preparation and Copper-Mediated Cross-Coupling**

Suchismita Mohapatra,† A. Bandyopadhyay,† D. K. Barma,† Jorge H. Capdevila,‡ and J. R. Falck*,†

Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, and Departments of Medicine and Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232

j.falck@utsouthwestern.edu

Received August 1, 2003

Addition of Zn(n-Bu₃Sn)₂ to prochiral aldehydes affords anti-α,β-dialkoxy- and anti-α-alkoxy-β-aminostannanes in good yield (up to 77%) and **excellent diastereoselectivity (up to 98% de).** *syn***-Isomers are accessed from the initial adducts via Mitsunobu inversion/saponification. The corresponding thionocarbamates undergo mild Cu(I)-mediated cross-coupling with a variety of organic halides, inter alia, allylic, cinnamylic, propargylic, and acetylenic, with retention of configuration.**

 α -Alkoxyalkylstannanes have received broad acceptance as convenient precursors to configurationally stable α -alkoxy-¹ and α -aminoalkyl anions,² as well as cuprates.³ Comparable transmetalations with α , β -dialkoxyalkylstannanes (1, X = O) and α-alkoxy-*β*-aminoalkylstannanes (**1**, $X = N'BOC$),
however, are thwarted by facile *β*-elimination (eq. 1)⁴ however, are thwarted by facile β -elimination (eq 1).⁴

Herein, we report the facile exchange of thionocarbamatesubstituted **1** with Cu(I) salts and subsequent high-yield cross-coupling to various organic halides with retention of configuration.5 Additionally, we describe a practical, diastereoselective preparation of chiral *syn*- and *anti*-**1** from readily available precursors.⁶

Addition of the lithium or magnesium salt of *n*-tributylstannane under a variety of conditions to prochiral aldehyde (*R*)-2,3-*O*-isopropylidene-D-glyceraldehyde (**2**) generated a

[†] UT Southwestern.

[‡] Vanderbilt University School of Medicine.

^{(1) (}a) Smyj, R. P.; Chong, J. M. *Org. Lett.* **²⁰⁰¹**, *³*, 2903-2906. (b) Still, W. C.; Sreekumar, C. *J. Am. Chem. Soc.* **¹⁹⁸⁰**, *¹⁰²*, 1201-1202. (c) Sawyer, J. S.; MacDonald, T. L.; McGarvey, G. J. *J. Am. Chem. Soc.* **1984**, *¹⁰⁶*, 3376-3377.

^{(2) (}a) Ncube, A.; Park, S. B.; Chong, J. M. *J. Org. Chem.* **2002**, *67*, ³⁶²⁵-3636. (b) Tomoyasu, T.; Tomooka, K.; Nakai, T. *Tetrahedron Lett.* **²⁰⁰⁰**, *⁴¹*, 345-349.

^{(3) (}a) Linderman, R. J.; Godfrey, A.; Horne, K. *Tetrahedron Lett.* **1987**, *²⁸*, 3911-3914.

⁽⁴⁾ Configurationally fixed anions and copper reagents have been prepared from R,*γ*-dialkoxyalkylstannanes: Linderman, R. J.; Griedel, B. D. *J. Org. Chem.* **¹⁹⁹¹**, *⁵⁶*, 5491-5493.

⁽⁵⁾ Thionocarbamates are useful alcohol protective groups: Barma, D. K.; Bandyopadhyay, A.; Capdevila, J. H.; Falck, J. R. *Org. Lett*. **2003**, *5*, ⁴⁷⁵⁵-4758.

⁽⁶⁾ Synthesis of chiral α -hydroxyalkylstannanes by asymmetric reduction of acylstannanes: (a) Chan, P. C. M.; Chong, J. M. *J. Org. Chem.* **1988**, *⁵³*, 5584-5586. (b) Marshall, J. A.; Gung, W. Y. *Tetrahedron Lett.* **¹⁹⁸⁸**, *²⁹*, 1657-1660.

mixture of *syn*- and *anti*-adducts.7 In sharp contrast, zinc bis- $(n$ -tributylstannane) afforded the *anti*-adduct $3^{8,9}$ in good yield and with very high diastereoselectivity (Table 1).¹⁰ The latter result is consistent with addition to the carbonyl following the nonchelation, Felkin model.¹¹ Cyclohexylidene **4**, ¹² oxazolidine **6**, ¹³ and pyrrolidine **8**¹⁴ behaved analogously

S.; Bauer, T. *Tetrahedron* **1986**, *42*, 447–488.

(8) Representative spectral/physical data for **3**: ¹H NMR (CDCl₃, 300 MHz) *^δ* 0.87-0.96 (m, 15H), 1.28-1.35 (m, 6H), 1.39 (s, 3H), 1.43 (s, 3H), 1.48-1.54 (m, 6H), 1.99-2.01 (m, 1H), 3.83-3.88 (m, 1H), 3.92- 3.97 (m, 1H), 4.19–4.21 (m, 1H), 4.30–4.36 (m, 1H); MS m/z 422 (M⁺); [α]²⁵_D 11.9° (c 1.65, CHCl₃). Representative spectral/physical data for 5:
¹H NMR (CDCl₃, 400 MHz) δ 0.87–0.94 (m, 15H), 1.29–1.63 (m 2.01-2.12 (m, 1H), 3.84 (t, 1H, $J = 7.4$ Hz), 3.94 (t, 1H, $J = 7.35$ Hz), 4.17-4.25 (m, 1H), 4.30-4.36 (m, 1H); MS m/z 462 (M⁺). Representative 4.17-4.25 (m, 1H), 4.30-4.36 (m, 1H); MS *^m*/*^z* 462 (M+). Representative spectral/physical data for **¹⁷**: 1H NMR (CDCl3, 400 MHz) *^δ* 0.89-0.97 (m, 15H), 1.30-1.36 (m, 6H), 1.37 (s, 3H), 1.44 (s, 3H), 1.48-1.55 (m, 6H), 1.82 (d, 1H, $J = 6.7$ Hz), 3.75 (t, 1H, $J = 7.30$ Hz), 3.91-3.96 (m, 2H), 4.39 (q, 1H, $J = 6.4$ Hz). Representative spectral/physical data for **20**: ¹H NMR (CDCl₃, 400 MHz) δ 0.87 (t, 9H, $J = 7.3$ Hz), 0.95 (t, 6H, $J = 7.5$ Hz), 1.24-1.34 (m, 9H), 1.39 (s, 3H), 1.42-1.54 (m, 6H), 3.10 (s, 3H), 3.35 (s, 3H), 3.62-3.66 (m, 1H), 4.07-4.11 (m, 1H), 4.44-4.54 (m, 1H), 4.64-5.72 (m, 1H); [α]²⁵_D 25.75° (*c* 2.36, CHCl₃). Representative spectral/physical data for **24**: ¹H NMR (CDCl₃, 400 MHz) δ 1.33 (s, 3H), 1.41 (s, 3H), 2.47-2.51 (m, 2H), 3.09 (s, 3H), 3.35 (s, 3H), 3.88 (dd, 1H, $J = 6.0$, 8.4 Hz), 4.03 (dd, 1H, $J = 6.8$, 8.4 Hz), 4.26-4.31 (m, 1H), 5.05-*J* = 6.0, 8.4 Hz), 4.03 (dd, 1H, *J* = 6.8, 8.4 Hz), 4.26–4.31 (m, 1H), 5.05–5.13 (m, 2H), 5.63–5.68 (m, 1H), 5.75–5.86 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 25.33, 26.61, 35.16, 37.93, 43.09, 66.40, 76.31, 80.11, 10 100 MHz) *δ* 25.33, 26.61, 35.16, 37.93, 43.09, 66.40, 76.31, 80.11, 109.82, 118.29, 133.40, 187.74; MS m/z 259 (M⁺); $[\alpha]^{25}$ _D = -17.56° (*c* 1.97, CHCl3). Representative spectral/physical data for **34**: 1H NMR (CDCl3, 300 MHz) *^δ* 1.34 (s, 3H), 1.38 (s, 3H), 1.90-1.97 (m, 4H), 2.35-2.42 (m, 2H), 2.71 (t, 2H, *J* = 7.8 Hz), 3.46-3.63 (m, 2H), 3.69-3.82 (m, 3H), 3.99 (dd, 1H, *J* = 6.0, 8.4 Hz), 4.23-4.31 (m, 1H), 5.44-5.53 (m, 1H), 3.99 (dd, 1H, *J* = 6.0, 8.4 Hz), 4.23–4.31 (m, 1H), 5.44–5.53 (m, 1H), 5.79–5.89 (m, 1H), 6.01–6.05 (m, 1H); ¹³C NMR (CDCl₃, 75 MHz) *δ*
24 74 25 44 25 82 26 54 34 42 35 49 48 06 52 37 66 08 77 68 80 03 24.74, 25.44, 25.82, 26.54, 34.42, 35.49, 48.06, 52.37, 66.08, 77.68, 80.03, 109.98, 125.17, 126.07, 128.51, 128.75, 135.52, 141.75, 184.44; $[\alpha]^{25}$ _D = -11.93° (*^c* 0.62, CHCl3). Representative spectral/physical data for **³⁶**: 1H NMR (CDCl₃, 400 MHz) *δ* 1.36 (s, 3H), 1.41 (s, 3H), 1.79−1.87 (m, 2H), 2.34-2.40 (m, 2H), 2.64 (t, 2H, $J = 8.0$ Hz), 2.97 (s, 6H), 3.72 (dd, 1H, $J = 6.8$, 8.0 Hz), 4.12 (dd, 1H, $J = 6.4$, 8.0 Hz), 4.62-4.68 (m, 1H), 5.33-5.40 (m, 1H), 7.14-7.20 (m, 3H), 7.23-7.28 (m, 2H); 13C NMR (CDCl3, 100 MHz) *δ* 26.07, 26.89, 29.79, 34.79, 35.43, 37.03, 69.62, 74.20, 91.90, 98.10, 109.83, 125.95, 128.50, 128.73, 142.38, 166.36, 207.79; MS *m*/*z* 361 (M⁺); $[\alpha]^{23}$ _D -5.30° (*c* 2.05, CHCl₃). Representative spectral/physical data for **38**: IR (neat) 1733, 1663, 1366, 1250, 1216, 1163, 1056 cm-1; 1H NMR (CDCl₃, 400 MHz) δ 1.24-1.32 (m, 4H), 1.35 (s, 3H), 1.40 (s, 3H), 1.42-1.53 (m, 2H), $1.54-1.62$ (m, 2H), $1.81-1.97$ (m, 4H), $2.24-2.34$ (m, 4H), 3.32 (t, 2H, $J = 6.8$ Hz), 3.48 (t, 2H, $J = 6.8$ Hz), 3.62 (s, 3H), (3.70) (dd, 1H, $J = 6.8$, 8.4 Hz), 4.10 (dd, 1H, $J = 6.0$, 8.4 Hz), 4.59–4.65 3.70 (dd, 1H, *J* = 6.8, 8.4 Hz), 4.10 (dd, 1H, *J* = 6.0, 8.4 Hz), 4.59–4.65
(m, 1H), 5.28–7.32 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) *δ* 24.74, 25.10,
25.88. 26.04. 26.88. 27.74. 28.76. 29.10. 34.26. 35.11. 46.24. 47.40 25.88, 26.04, 26.88, 27.74, 28.76, 29.10, 34.26, 35.11, 46.24, 47.40, 51.63 69.63, 74.29, 91.68. 98.23, 109, 76, 163.76, 163.87, 174.45, 207.58; MS m/z 441 (M⁺); [α]²³_D -11.60° (*c* 1.5, CHCl₃).

(9) The configuration of **3** was confirmed by conversion to **22**, removal of the thiocarbamate using LiAlH4, and comparisons of the resultant alcohol with authentic samples of *erythro*- and *threo*-1,2-*O*-iospropylidenehex-5 ene-1,2,3-triol. The configuration of diastereomer **17** was likewise confirmed. Roush, W. R.; Walts, A. E.; Hoong, L. K. *J. Am. Chem. Soc.* **1985**, *¹⁰⁷*, 8186-8190.

(10) **General Procedure for Preparation of** α **,** β **-Dialkoxy- and** r**-Alkoxy-***â***-amidostannanes.** *ⁿ*-Buli (2.2 mmol, 2.5 M in hexane) was added dropwise to a 0 °C solution of $(i-Pr)_{2}NH$ (2.2 mmol) in anhydrous THF (3 mL) under an argon atmosphere. After stirring for 0.5 h, Bu₃SnH (2.2 mmol) was added neat over 10 min followed after another 0.5 h by dry ZnBr2 (1.1 mmol) in THF (2 mL). The reaction mixture was maintained at 0 °C for 0.5 h, then cooled to -78 °C, and the prochiral aldehyde (1.0) mmol) in THF (2 mL) was added. After 4 h, the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O (3×8) mL). The combined ethereal extracts were washed with water and brine, dried over Na₂SO₄, and evaporated under reduced pressure. The residue was purified by flash $SiO₂$ chromatography to the α -hydroxyalkylstannane adduct in 68-77% yield (Table 1). Adducts are somewhat labile and are best used immediately in the next reaction.

(11) Mead, K.; Macdonald, T. L. *J. Org. Chem.* **¹⁹⁸⁵**, *⁵⁰*, 422-424.

(12) Chattopadhyay, A.; Mamdapur, V. R. *J. Org. Chem.* **¹⁹⁹⁵**, *⁶⁰*, 585- 587.

(13) Coleman, R. S.; Carpenter, A. J. *Tetrahedron Lett.* **¹⁹⁹²**, *³³*, 1697- 1700.

^a Determined by NMR analysis of Mosher ester.

to **2**, leading predominately to *anti*-adducts **5**, **7**, and **9**, respectively. It was gratifying that the results with acyclic α -hydroxyaldehydes were also satisfactory, provided good coordinating substituents were present, e.g., MOM ether **10**¹⁵ to **11** and MEM ether **12** to **13**. Some loss of stereospecificity occurs when esters are used, as evident in the conversion of **14**¹⁶ to **15**. Because the adducts were somewhat labile, they were typically utilized in the next step with a minimum of delay.

Access to the corresponding *syn*-adducts was achieved by the Mitsunobu inversion/deprotection sequence embodied in the transformation of **3** into **17** via benzoate **16** (eq 2).

⁽¹⁴⁾ Tokuyama, H.; Yokoshima, S.; Lin, S.-C.; Li, L.; Fukuyama, T. *Synthesis* **²⁰⁰²**, 1121-1123. (15) Ogura, K.; Tsuruda, T.; Takahashi, K.; Iida, H. *Tetrahedron Lett.*

⁽⁷⁾ Review of organometallic additions to aldehyde **2**: Jurczak, J.; Pikul,

¹⁹⁸⁶, *²⁷*, 3665-3668.

⁽¹⁶⁾ Kosugi, H.; Kitaoka, M.; Takahashi, A.; Uda, H*. J. Chem. Soc., Chem. Commun*. **¹⁹⁸⁶**, 1268-1270.

As previously reported, 17 transition metal catalyzed crosscouplings of α -hydroxy- and α -aminoalkylstannanes are greatly facilitated by derivatization of the α -heteroatom with coordinating functionality. Thionocarbamates are especially efficacious and can stabilize the intermediate organometallic at room temperature or above.17b Conventional thionocarbamoylation⁵ of the adducts in Table 1 using *N*,*N*-dimethylthiocarbamoyl chloride/NaH caused some equilibration, presumably via reversion to the starting aldehyde and sodium *n*-tributylstannane, then rapid recombination. Alternatively, good to excellent yields of thiocarbamate were obtained by sequential reaction with 1,1′-thiocarbonyldiimidazole and addition of a secondary amine to the intermediate thionoimidazolide.5 This process is illustrated in the conversion of **3a**,**b** to **18a**,**b** and whence to pyrrolidine **19a**,**b** and dimethylamine **20** in good overall yields (Scheme 1).

The scope of the cross-coupling was explored using **19a**,**b** or **20** and a panel of representative organic halides (Table 2).18 All three model stannanes cross-coupled smoothly with allyl bromide (**21**) using any of several Cu(I) salts in THF at 50 °C and gave essentially identical yields of **22**, **23**, and **24**, respectively. However, the reaction rate was generally fastest with CuI.19 Cinnamyl bromide **25** led to **26** as the sole product, whereas addition to (*Z*)-allyl bromide **27** afforded 28 accompanied by a minor amount (5%) of S_N2' adduct. Notably, no (*E*)-**28** was observed. Similar behavior was exhibited by acetylenes **29** and **31**; the former phenyl conjugated system yielded **30** only and the latter nonconjugated propargyl gave **32** and a small amount (6%) of allene. Yields of adducts at sp*²* -centers, such as vinyl iodide **33** to **34**, were typically modest under our standard conditions. On the other hand, reactions at sp-centers proceeded well, e.g., **36** from **35** in 96% yield and **38** from **37** in 94% yield.

In summary, we report a practical diastereoselective synthesis of *syn*- and *anti*- α , β -dialkoxy- or α -alkoxy- β aminostannanes from prochiral aldehydes, conversion of the adducts to thionocarbamates, and subsequent Cu(I)-mediated stereospecific cross-coupling with organic halides. We

^{(17) (}a) Falck, J. R.; Bhatt, R. K.; Ye, J. *J. Am. Chem. Soc*. **1995**, *117*, ⁵⁹⁷³-5982. (b) Bhatt, R. K.; Ye, J.; Falck, J. R. *Tetrahedron Lett.* **¹⁹⁹⁶**, *³⁷*, 3811-3814.

⁽¹⁸⁾ **Cross-Coupling General Procedure.** To a stirring, room-temperature solution of α , β -dialkoxystannane or α -alkoxy- β -aminostannane (1.0) mmol) and CuI $(7-10 \text{ mol } %)$ in anhydrous THF (5 mL) was added an organic halide (1.1 mmol) in THF (1 mL) under an argon atmosphere. The resulting solution was heated at 50 °C for 3-4 h. After cooling, Et₂O (10 mL) was added, and the mixture was filtered. Evaporation ot the filtrate under reduced pressure and chromatographic purification of the residue gave the cross-coupled adduct in the indicated yield (Table 2).

⁽¹⁹⁾ Best results were obtained with $7-10$ mol % of Cu(I) salt. Larger quantities encouraged *â*-elimination.

anticipate this methodology will find wide utility in the construction of stereogenic centers.

Acknowledgment. Financial support provided by the Robert A. Welch Foundation and NIH (GM31278, DK38226, GM37922).

Supporting Information Available: Physical and spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL035458V